
CVXOPT plugin for OpenOffice.org

User’s Guide

J. Dahl and L. Vandenberghe

October 18, 2008

1 Introduction

The OpenOffice.org plugin described in this document provides a spreadsheet interface to the basic
optimization solvers in the Python convex optimization package CVXOPT.

2 License

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version. This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

3 Installation

The plugin is available from https://cvxopt.org as a compressed zip-file. It requires OpenOffice.org
2.2.0 or later, Python, and CVXOPT version 1.1 or later1. After downloading and unpacking the
plugin, open the OpenOffice.org spreadsheet and select Extension Manager from the Tools menu.
In the extension manager window, choose Add and select the file cvxopt.uno.zip.

4 A small example

Before describing the optimization functions in more detail, we illustrate the basic usage with a
simple linear programming problem,

minimize −4x1 − 5x2
subject to 2x1 + x2 ≤ 3

x1 + 2x2 ≤ 3
x1 ≥ 0, x2 ≥ 0.

1 The installation of CVXOPT must be in a location known to the OpenOffice.org spreadsheet. On a Linux system
this corresponds to a regular “system-wide” installation. For other platforms installation may vary.

1

https://cvxopt.org
http://www.gnu.org/licenses/
https://cvxopt.org
http://www.openoffice.org
https://cvxopt.org
http://www.openoffice.org
https://cvxopt.org
http://www.openoffice.org


We assume that the OpenOffice.org spreadsheet has been started with an empty sheet2.

1. Enter the coefficients of the objective. To specify the cost function, we enter the coefficients
in adjacent cells. For example, enter -4 in the cell B1 and -5 in the cell C1.

2. Enter the constraints. To enter the parameters of the constraint

2x1 + x2 ≤ 3

enter the values 2, 1, 3 in the cells B3, C3 and E3, respectively, and enter the inequality string
<= in cell D3. In a similar way, enter the coefficients of other three inequalities below the first
one, i.e., enter the values 1, 2, 3, 1, 0, 0, 0, 1, 0 in the cells B4, C4, E4, B5, C5, E5, B6, C6,
and E6, respectively, and the inequality strings <=, >=, >= in cells D4, D5, D6.

3. Solve the linear program.
Type

= CLP(B1:C1;B2:C2;B3:E6;A3:A6)

in cell B9. The solver returns the optimal value -9 in cell B9, the primal solution in cells B2

and C2 and the dual solution in cells A3–A6.

Apart from some cosmetic formatting, the resulting spreadsheet should look like figure 1. In the
following sections we give a detailed description of the solver functions.

5 Cone linear programming

A cone (linear) program is an optimization problem of the form

minimize cTx
subject to Gx � h

Ax = b.

The inequality is a generalized inequality with respect to a proper convex cone. The CVXOPT

plugin accepts a combination of linear inequalities, second order cone inequalities, and linear matrix
inequalities; see chapter 8 of the CVXOPT user’s guide.

The format of the cone programming solver is

CLP(c; x; constraints; dvar)

where c is a cell-range with the location of the coefficients c of the objective, x is a cell-range in
which the solution x will be returned, constraints is a cell-range with the location of the constraint
parameters (i.e., both the equality constraints Ax = b and the inequality constraints Gx � h), and
dvar is a cell-range in which the dual variables will be returned.

If the problem is successfully solved the function returns the optimal value cTx, and the (ap-
proximately) optimal primal and dual solutions. If the problem is found to be primal infeasible

2On Ubuntu 7.10, the Linux distribution used for developing and testing the plugin, the OpenOffice.org spreadsheet
must be started from the Applications menu. For unknown reasons, the plugin will not work correctly if the
spreadsheet is started from a terminal. Similar behaviour may be experienced on other platforms.

2

http://www.openoffice.org
https://cvxopt.org
https://cvxopt.org
http://www.openoffice.org


Figure 1: Screenshot of the linear programming example.

the function returns a status string primal infeasible and a certificate of primal infeasiblity in
the location of the dual variables. If the problem is determined to be dual infeasible, the function
returns a status string dual infeasible and a certificate of dual infeasibility in the location of the
primal variables. If the solver is unable to determine the problem status, it returns a status string
unknown.

5.1 Scalar linear inequalities

The simplest example of linear cone programs are problems with only scalar linear inequalities. As
an example, let us return to the linear programming problem of §4:

minimize −4x1 − 5x2
subject to 2x1 + x2 ≤ 3

x1 + 2x2 ≤ 3
x1 ≥ 0, x2 ≥ 0.

Figure 1 shows a screenshot of the spreadsheet for solving the linear program. The cost vector c

is specified in cells B1:C1, the solution vector x is returned in B2:C2, the constraints are specified
in B3:E6, and the dual variables are returned in A3:A6. The linear inequality constraints can be
specified using either <=, <, >=, or >.

5.2 Second-order cone inequalities

A second-order cone inequality is specified by placing a <q or <=q specifier in the cell between the
first row of the coefficient matrix and the first component of the righthand side. As an example,

3



we solve the second-order cone program from §8.5 of the CVXOPT documentation,

minimize −2x1 + x2 + 5x3

subject to

∥∥∥∥∥
[
−13x1 + 3x2 + 5x3 − 3
−12x1 + 12x2 − 6x3 − 2

]∥∥∥∥∥
2

≤ −12x1 − 6x2 + 5x3 − 12∥∥∥∥∥∥∥
 −3x1 + 6x2 + 2x3

x1 + 9x2 + 2x3 + 3
−x1 − 19x2 + 3x3 − 42


∥∥∥∥∥∥∥
2

≤ −3x1 + 6x2 − 10x3 + 27.

Figure 2 shows a screenshot of the spreadsheet for the second-order cone programming example.

Figure 2: Screenshot of the second-order cone programming example.

The cost vector c is specified in B1:D1. and the second-order conic inequalities in B3:F9. The
primal solution x is returned in B2:D2, and the dual solution in A3:A9.

5.3 Linear matrix inequalities

A linear matrix inequality is specified by placing a <s or <=s specifier in the cell between the first
row of the coefficient matrix and the first component of the righthand side. As an example we solve
the semidefinite program in §8.6 of the CVXOPT documentation,

minimize x1 − x2 + x3

subject to x1

[
−7 −11
−11 3

]
+ x2

[
7 −18
−18 8

]
+ x3

[
−2 −8
−8 1

]
�
[

33 −9
−9 26

]
x1

 −21 −11 0
−11 10 8

0 8 5

+ x2

 0 10 16
10 −10 −10
16 −10 3

+ x3

 −5 2 −17
2 −6 −7
−17 8 6

 �
 14 9 40

9 91 10
40 10 15

 .
4

https://cvxopt.org
https://cvxopt.org


Figure 3 shows the spreadsheet. The cost vector c is specified in B1:D1 and the linear matrix

Figure 3: Screenshot of the semidefinite programming example.

inequalities in B3:F15. The symmetric matrix coefficients are entered in column major order. The
righthand sides are also entered in column major order. The solution vector x is returned in B2:D2,
and the dual variables in A3:A15.

5.4 Linear equalities

We can also include linear equality constraints, which are specified similarly using either = or ==.
Note, that to enter == into the spreadsheet, it is required to add a leading ’ character (i.e., type
’==) to differentiate the string from the logic comparison operator.

5.4.1 General example

More generally, we can have a combination of the three types of inequalities described above
(i.e., a combination of scalar linear inequalities, second-order cone inequalities, and linear matrix
inequalities) and linear equality constraints. The different inequality and equality constraints can
be entered in arbitrary order.

5



As an example we solve the problem

minimize −6x1 − 4x2 − 5x3
subject to 16x1 − 14x2 + 5x3 ≤ −3

7x1 + 2x2 ≤ 5(
(8x1 + 13x2 − 12x3 − 2)2 + (−8x1 + 18x2 + 6x3 − 14)2 + (x1 − 3x2 − 17x3 − 13)2

)1/2
≤ −24x1 − 7x2 + 15x3 + 12

(x21 + x22 + x23)1/2 ≤ 10 7x1 + 3x2 + 9x3 −5x1 + 13x2 + 6x3 x1 − 6x2 − 6x3
−5x1 + 13x2 + 6x3 x1 + 12x2 − 7x3 −7x1 − 10x2 − 7x3
x1 − 6x2 − 6x3 −7x1 − 10x2 − 7x3 −4x1 − 28x2 − 11x3

 �
 68 −30 −19
−30 99 23
−19 23 10

 .
Figure 4 shows a screenshot of the spreadsheet.

Figure 4: Screenshot of the general conic programming example.

6 Cone quadratic programming

A cone (quadratic) program is an optimization problem of the form

minimize (1/2)xTPx+ qTx
subject to Gx � h

Ax = b

where P is a symmetric positive semidefinite matrix, and the inequality denotes a generalized
inequality as in §5. From the spreadsheet, it is solved using the CQP routine,

6



CQP(P; q; x; constraints; dvar)

where P is a cell-range specifying the quadratic term P of the objective function, q is a cell-range
specifying the linear term q of the objective function, x is a cell-range in which the solution vector x
is returned, constraints is a cell-range specifying the constraints (generalized inequalities Gx � h
and equalities Ax = b), and dvar is a cell-range in which the dual optimal dual variables are
returned. The function either returns the optimal solution (1/2)xTPx + qTx or a status string
unknown.

As a simple example we solve a regular quadratic programming problem (i.e., one including
only linear constraints),

minimize x21 + x22 − 4x1 − 5x2
subject to 2x1 + x2 ≤ 3

x1 + 2x2 ≤ 3
x1 ≥ 0, x2 ≥ 0
x1 + x2 = 1

using the spreadsheet in figure 5. The matrix P is specified in B3:C4, the vector q in B1:D1, and

Figure 5: Screenshot of the quadratic programming example.

the constraints in B6:E10. The solution vector x is returned in B2:D2, and the dual variables in
A6:A10. For a more advanced examples including nonlinear inequalities, see §8.

7



7 Geometric programming

The CVXOPT plugin also accepts geometric programs in posynomial form,

minimize f0(x)
subject to fi(x) ≤ αi, i = 1, . . . ,m

hi(x) = βi, i = 1, . . . , p.

The functions fi(x) are posynomial functions,

fi(x) =
Ki∑
k=1

c
(i)
k x

a
(i)
k1

1 x
a
(i)
k2

2 · · ·xa
(i)
kn

n ,

with c
(i)
k > 0. The functions hi(x) are monomial functions,

hi(x) = dix
bi1
1 xbi22 · · ·x

bin
n ,

with di > 0. The righthand sides αi and βi are positive.
The geometric programming solver is called using the GP function

GP(obj; x; F; dvar)

where obj is a cell-range with the data for the objective function, x is a cell-range in which the
solution vector x is returned, F is a cell-range with the constraint parameters, and dvar is a cell-
range in which dual optimal solution is returned. Posynomial inequalities are specified using the <

or <= strings, and monomial equalities are specified using the = or == strings. The function either
returns the optimal value f0(x) or a status string unknown. The coefficients of the posynomials fi
are entered as matrices with n+1 columns and as many rows as there are terms in the posynomial.

The first column contains the coefficients c
(i)
k , the second column the coefficients a

(i)
k1 , the third

column the coefficients a
(i)
k2 , et cetera.

The dual variables are the dual multipliers for the equivalent convex problem

minimize log f0(e
y1 , . . . , eyn)

subject to log fi(e
y1 , . . . , eyn) ≤ logαi, i = 1, . . . ,m

log hi(e
y1 , . . . , eyn) = log βi, i = 1, . . . , p.

As an example we solve the geometric program in §9.3 of the CVXOPT documentation,

minimize w−1h−1d−1

subject to 2hw + 2hd ≤ 100
wd ≤ 1000
0.5wh−1 ≤ 1
hw−1 ≤ 2
0.5wd−1 ≤ 1
dw−1 ≤ 2

with variables h, w, d (see figure 6). The objective function is specified in B1:E1 and the constraints
in B3:G9. The solution vector x is returned in C2:E2, and the dual optimal solution in A3:A9.

8

https://cvxopt.org


Figure 6: Screenshot of the geometric programming example.

8 Constrained least-squares problems

In this section we illustrate more advanced features of CVXOPT and OpenOffice.org spreadsheets,
solving a constrained least-squares problem from §8.2 of the CVXOPT manual,

minimize ‖Ax− b‖22
subject to x � 0

‖x‖2 ≤ 1

with

A =


0.3 0.6 −0.3
−0.4 1.2 0.0
−0.2 −1.7 0.6
−0.4 0.3 −1.2

1.3 −0.3 −2.0

 , b =


1.5
0.0
−1.2
−0.7

0.0

 .
For tutorial value, we summarize below the necessary steps in creating the spreadsheet shown in
Fig 7.

1. Specifying A and b.
We first enter the A and b matrices in cell-ranges B2:C6 and F2:F6, respectively. We then give
those two cell-ranges symbolic names A and b using Insert->Names->Define (or CTRL-F3).

2. Calculating P and q.
We next compute P = ATA by writing =MMULT(TRANSPOSE(A);A) followed by CTRL-SHIFT-ENTER

9

https://cvxopt.org
http://www.openoffice.org
https://cvxopt.org


Figure 7: Screenshot of the cone quadratic programming example.

10



into cell B10. Similarly, we compute q = −AT b by writing =-TRANSPOSE(MMULT(TRANSPOSE(A);b)
followed by CTRL-SHIFT-ENTER into cell B8. We then assign the symbolic names P and q to
the two computed matrices.

3. Specifying solution variables.
We assign the symbolic names x to B9:D9, dvar to A14:A20, and Constraint to B14:F20.

4. Solving the problem.
We solve the problem by writing =CQP(P;q;x;Constraints;dvar) into cell B22. The result-
ing spreadsheet should look similar to Fig. 7 apart form cosmetic changes.

11


	Introduction
	License
	Installation
	A small example
	Cone linear programming
	Scalar linear inequalities
	Second-order cone inequalities
	Linear matrix inequalities
	Linear equalities
	General example


	Cone quadratic programming
	Geometric programming
	Constrained least-squares problems

