# Figures 7.1, page 355.
# Logistic regression.
import pickle
from cvxopt import solvers, matrix, spdiag, log, exp, div
solvers.options['show_progress'] = False
data = pickle.load(open("logreg.bin", 'rb'))
u, y = data['u'], data['y']
# minimize sum_{y_k = 1} (a*uk + b) + sum log (1 + exp(a*u + b))
#
# two variables a, b.
m = u.size[0]
A = matrix(1.0, (m,2))
A[:,0] = u
c = -matrix([sum( uk for uk, yk in zip(u,y) if yk ), sum(y) ])
# minimize c'*x + sum log (1 + exp(A*x))
#
# variable x (2).
def F(x=None, z=None):
if x is None: return 0, matrix(0.0, (2,1))
w = exp(A*x)
f = c.T*x + sum(log(1+w))
grad = c + A.T * div(w, 1+w)
if z is None: return f, grad.T
H = A.T * spdiag(div(w,(1+w)**2)) * A
return f, grad.T, z[0]*H
sol = solvers.cp(F)
a, b = sol['x'][0], sol['x'][1]
try: import pylab
except ImportError: pass
else:
pylab.figure(facecolor='w')
nopts = 200
pts = -1.0 + 12.0/nopts * matrix(list(range(nopts)))
w = exp(a*pts + b)
pylab.plot(u, y, 'o', pts, div(w, 1+w), '-')
pylab.title('Logistic regression (fig. 7.1)')
pylab.axis([-1, 11, -0.1, 1.1])
pylab.xlabel('u')
pylab.ylabel('Prob(y=1)')
pylab.show()